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1. INTRODUCTION

Campbell diagrams are very common in the analysis of rotating machines [1}4]. They show
the variation of natural frequencies as a function of rotational speed. Typically, the natural
frequencies change with speed because of gyroscopic e!ects and bearing characteristics.
Usually, the topology of the Campbell diagram is very simple, particularly if the supports
are isotropic and the rotor symmetric. The main purpose of this paper is to show that
viscous damping in the bearings can produce bifurcations in both the Campbell diagram
and the plot of damping ratio against shaft speed.

2. THE RIGID ROTOR

Consider the rigid rotor on #exible supports shown in Figure 1, where the co-ordinate
origin is placed at the rotor centre of gravity. The Ox and Oy directions are orthogonal to
the rotor axis and to each other. The sti!ness at bearing 1 in the Ox direction is given by
k
x1

. The sti!ness in the Oy direction and those at bearing 2 are de"ned in a similar,
consistent way, as are the damping coe$cients. The use of discrete springs and dashpots has
implicitly assumed that the principal axes for both sti!ness and damping are in the Ox and
Oy directions. The equations of motion for this rotor, are [1}4]
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Figure 1. The rigid rotor on #exible supports.
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and the sti!ness coe$cients are de"ned in a similar way. u and v are the displacements in the
Ox and Oy directions, and h and t are the rotations about the Ox and Oy axes. a and b are
the distances between the rotor centre of gravity and the bearings, as shown in Figure 1. The
subscripts ¹ and R represent the combined translational and rotational sti!nesses of the
bearings referred to the co-ordinate origin. The subscript C represents the coupling between
the translational and rotational degrees of freedom.

For simplicity we will only analyze the case when the translational and rotational degrees
of freedom decouple, so that k
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"k

yC
"0 and c
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"0. Thus equation (1) becomes
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We now consider two particular cases of damping.

3. RIGID ROTOR ON ISOTROPIC SUPPORTS WITH DAMPING

We consider the case of a rigid rotor on isotropic supports, that is where the support
sti!ness and damping are the same in both the x and y directions. Thus, we can let
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, and similarly for the angular quantities. Equation (3)

becomes
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Combining the "rst and second, and third and fourth equations by letting r"u#jv and
/"t!jh, we have
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This double use of the imaginary unit for both temporal and spatial phases is consistent in
this case because we are only considering the synchronous response. Looking for
eigenvalues by setting r (t)"r
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est in equation (5) gives
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The "rst of equation (6) has, if 2k
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, the complex conjugate pair of roots,

s
1,2

"!

c
T

2m
$jS

k
T

m
!

c2
T

2m
. (7)

The roots of the second of equation (6) cannot be expressed as a simple algebraic equation
with a real and an imaginary part. However, the two roots will be of the form
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Thus we have
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or expanding,
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Examining equation (6) we see that the constant term in the second of equation (6) is real.
Thus in equation (10) the imaginary part of the constant term must be zero. Hence
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Thus, it follows that
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This tells us that even when a pair of natural frequencies separate due to gyroscopic
e!ects, the damping factor for the two modes will be identical if the bearings are isotropic.

4. RIGID ROTOR WITH ANISOTROPIC DAMPING IN SUPPORTS

We now consider the situation that arises when the support sti!nesses are identical in the
Ox and Oy directions but the damping is not. Thus in equations (3) we set k
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and k
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The "rst and second equations of (13) are uncoupled and can readily be solved
independently. Focusing our attention of the second pair of coupled equations, we will look
for eigenvalues by setting h"h

0
est and t"t

0
est. Thus, the second pair of equations of (13)

becomes

(I
d
s2#c

yR
s#k

R
)h

0
#I

p
Xst

0
"0,

(I
d
s2#c

xR
s#k

R
)t

0
!I

p
Xsh

0
"0. (14)

The characteristic equation corresponding to equation (14) is
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This can be rearranged to give
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then the natural frequencies of the two forms of equation (17) are
equal but the damping coe$cients, and hence the damping ratios, are di!erent depending
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The characteristic equation (16) may be written as
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Consider now the third and fourth equations of (4). These equations describe the case when
both the support sti!ness and the damping are isotropic. Letting t (t)"t
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which gives the characteristic equation
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Comparing equations (19) and (21) we see that when X2'c2
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, the anisotropic damping

case will give same pattern of behaviour as isotropic case, except that the behaviour is
dependant on the mean, rather than the actual damping coe$cients and the frequency is
shifted from X to XK .

Thus, for rotor speeds less than c
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rotational degrees of freedom are equal, and the damping ratios are di!erent. For rotor
speeds greater than c
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5. A SIMPLE EXAMPLE

A uniform rigid rotor has a length of 0)5 m and a diameter of 0)2 m and is made from steel
having a density of 7810 kg/m3. It is supported at its ends by bearings. Both bearings
supports have horizontal and vertical sti!nesses of 1 MN/m. The damping coe$cient in the
Ox direction is 1 kN s/m and in the Oy direction, 1)2 kNs/m. The eigenvalue problem is
solved from rest to a maximum rotor speed of 500 r.p.m. Figure 2 shows the variation of
natural frequency with rotor speed, and Figure 3 shows the variation of the damping ratio.
Note that the damping ratios of the two rotational modes become identical at 194)60 r.p.m.
Also, at this speed the natural frequencies separate.

6. A COMPLEX EXAMPLE

The above analysis was performed for a simple rotor system. Similar e!ects can occur
with more complex rotor systems. Figure 4 shows a schematic of a #exible rotor supported
on two #uid bearings located at the ends of the shaft. The shaft is 1)5 m long, 50 mm in
diameter and is modelled using 6 Timosenko beam elements. One disc of 70 mm thickness
Figure 2. Plot of natural frequencies against rotor speed for each mode for the rigid rotor example.



Figure 3. Plot of damping ratios against rotor speed for each mode for the rigid rotor example.

Figure 4. The #exible rotor on #uid bearings.
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and 280 mm diameter is placed 0)5 m from the left bearing, and a second disc of 70 mm
thickness and 350 mm diameter is placed 0)5 m from the right bearing. The #uid bearings
have a diameter of 100 mm, a length of 55 mm, a clearance of 0)1 mm and are "lled with oil
of viscosity 0)015 N s/m2. Short bearing theory [5] is used to compute the linearized
sti!ness and damping matrices for the bearings, and these are shown in Figures 5 and 6. The
load on each bearing is taken as 450N. Figures 7 and 8 show the variation of natural
frequency and damping ratio of modes 5 and 6 of the rotor. The bifurcations at 408 r.p.m.
are quite clear, although the damping ratio does not remain equal when the natural
frequencies separate because the bearing sti!ness and mass matrices are asymmetric.
Furthermore, for low rotor speeds the natural frequencies are close, but not equal, and the
damping ratios do not quite become equal.

7. CONCLUSIONS

This paper has investigated how the variation of natural frequency and damping ratio
change with rotational speed for rotating machines. Rigid rotors on anisotropic #exible
supports are studied in detail for the case when there is no coupling between the
translational and rotational degrees of freedom. At low speed the natural frequencies
corresponding to the rotational degrees of freedom are equal, and the damping ratios are
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di!erent. For high rotor speeds these natural frequencies separate but the damping ratios
are equal. These features are not so apparent for more complex systems; however, the
knowledge that such features can exist should be reassuring when faced with unusual
features in these plots of natural frequency and damping ratio.
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Figure 7. Plot of natural frequencies against rotor speed for modes 5 and 6 for the #uid bearing example.

Figure 8. Plot of damping ratios against rotor speed for modes 5 and 6 for the #uid bearing example.
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